The K nearest neighbors algorithm is one of the world’s most popular machine learning models for solving classification problems.

A common exercise for students exploring machine learning is to apply the K nearest neighbors algorithm to a data set whether the categories are not known. A real-life example of this would be if you needed to make predictions using machine learning on a data set of classified government information.

In this tutorial, you will learn to write your first K nearest neighbors machine learning algorithm in Python. We will be working with an anonymous data set similar to the situation described above.

The Libraries You Will Need in This Tutorial

To write a K nearest neighbors algorithm, we will take advantage of many open-source Python libraries including NumPy, pandas, and scikit-learn.

Begin your Python script by writing the following import statements:

```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```
Importing the Data Set Into Our Python Script

Our next step is to import the classified_data.csv file into our Python script. The pandas library makes it easy to import data into a pandas DataFrame.

Since the data set is stored in a csv file, we will be using the read_csv method to do this:

```python
raw_data = pd.read_csv('classified_data.csv')
```

Printing this DataFrame inside of your Jupyter Notebook will give you a sense of what the data looks like:

```
<table>
<thead>
<tr>
<th>Unnamed</th>
<th>WTT</th>
<th>PTI</th>
<th>EDW</th>
<th>SRI</th>
<th>LOE</th>
<th>QWG</th>
<th>FDJ</th>
<th>PJF</th>
<th>HQE</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.913917</td>
<td>1.152073</td>
<td>0.557946</td>
<td>0.755464</td>
<td>0.760862</td>
<td>0.320680</td>
<td>0.275897</td>
<td>0.543708</td>
<td>0.579422</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.635502</td>
<td>1.003072</td>
<td>0.535342</td>
<td>0.623945</td>
<td>0.924109</td>
<td>0.958450</td>
<td>0.975334</td>
<td>1.315350</td>
<td>0.921552</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.721360</td>
<td>1.201469</td>
<td>0.921990</td>
<td>0.655991</td>
<td>1.020929</td>
<td>0.720781</td>
<td>1.020521</td>
<td>1.154983</td>
<td>0.957877</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.034024</td>
<td>1.398726</td>
<td>0.653046</td>
<td>0.826421</td>
<td>1.125014</td>
<td>0.875128</td>
<td>1.409708</td>
<td>1.360003</td>
<td>1.520602</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1.270401</td>
<td>0.940780</td>
<td>0.627280</td>
<td>0.668976</td>
<td>1.222537</td>
<td>0.703727</td>
<td>1.115596</td>
<td>0.846661</td>
<td>1.463812</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>995</td>
<td>995</td>
<td>1.010953</td>
<td>1.034006</td>
<td>0.653116</td>
<td>0.624640</td>
<td>1.056410</td>
<td>0.566540</td>
<td>0.746811</td>
<td>0.319752</td>
<td>1.117340</td>
</tr>
<tr>
<td>996</td>
<td>996</td>
<td>0.575529</td>
<td>0.957568</td>
<td>0.941835</td>
<td>0.792882</td>
<td>1.414277</td>
<td>1.269540</td>
<td>1.265928</td>
<td>0.713190</td>
<td>0.856864</td>
</tr>
<tr>
<td>997</td>
<td>997</td>
<td>1.135470</td>
<td>0.982462</td>
<td>0.781905</td>
<td>0.916738</td>
<td>0.901031</td>
<td>0.864738</td>
<td>0.366021</td>
<td>0.369584</td>
<td>0.919191</td>
</tr>
<tr>
<td>998</td>
<td>998</td>
<td>1.084894</td>
<td>0.891769</td>
<td>0.407158</td>
<td>0.660995</td>
<td>1.608612</td>
<td>0.943859</td>
<td>0.855503</td>
<td>1.061338</td>
<td>1.277456</td>
</tr>
<tr>
<td>999</td>
<td>999</td>
<td>0.837469</td>
<td>0.951184</td>
<td>0.417005</td>
<td>0.709784</td>
<td>0.934309</td>
<td>0.424762</td>
<td>0.778234</td>
<td>0.307585</td>
<td>1.257130</td>
</tr>
</tbody>
</table>
```

You will notice that the DataFrame starts with an unnamed column whose values are equal to the DataFrame’s index. We can fix this by making a slight adjustment to the command that imported our data set into the Python script:

```python
raw_data = pd.read_csv('classified_data.csv', index_col = 0)
```

Next, let’s take a look at the actual features that are contained in this data set. You can print a list of the data set’s column names with the following statement:

```python
print(raw_data.columns)
```
Since this is a classified data set, we have no idea what any of these columns means. For now, it is sufficient to recognize that every column is numerical in nature and thus well-suited for modelling with machine learning techniques.

Importing the Data Set Into Our Python Script

Since the K nearest neighbors algorithm makes predictions about a data point by using the observations that are closest to it, the scale of the features within a data set matters a lot.

Because of this, machine learning practitioners typically **standardize** the data set, which means adjusting every x value so that they are roughly on the same scale.

Fortunately, **scikit-learn** includes some excellent functionality to do this with very little headache.

To start, we will need to import the **StandardScaler** class from **scikit-learn**. Add the following command to your Python script to do this:

```python
from sklearn.preprocessing import StandardScaler
```

This function behaves a lot like the **LinearRegression** and **LogisticRegression** classes that we used earlier in this course. We will want to create an instance of this class and then fit the instance of that class on our data set.
First, let’s create an instance of the `StandardScaler` class named `scaler` with the following statement:

```python
scaler = StandardScaler()
```

We can now train this instance on our data set using the `fit` method:

```python
scaler.fit(raw_data.drop('TARGET CLASS', axis=1))
```

Now we can use the `transform` method to standardize all of the features in the data set so they are roughly the same scale. We’ll assign these scaled features to the variable named `scaled_features`:

```python
scaled_features = scaler.transform(raw_data.drop('TARGET CLASS', axis=1))
```

This actually creates a NumPy array of all the features in the data set, and we want it to be a pandas DataFrame instead.

Fortunately, this is an easy fix. We’ll simply wrap the `scaled_features` variable in a `pd.DataFrame` method and assign this DataFrame to a new variable called `scaled_data` with an appropriate argument to specify the column names:

```python
scaled_data = pd.DataFrame(scaled_features, columns = raw_data.drop('TARGET CLASS', axis=1).columns)
```

Now that we have imported our data set and standardized its features, we are ready to split the data set into training data and test data.

Splitting the Data Set Into Training Data and Test Data

We will use the `train_test_split` function from `scikit-learn` combined with list unpacking to create training data and test data from our classified data set.
First, you’ll need to import `train_test_split` from the `model_validation` module of `scikit-learn` with the following statement:

```python
from sklearn.model_selection import train_test_split
```

Next, we will need to specify the x and y values that will be passed into this `train_test_split` function.

The x values will be the `scaled_data` DataFrame that we created previously. The y values will be the `TARGET CLASS` column of our original `raw_data` DataFrame.

You can create these variables with the following statements:

```python
x = scaled_data
y = raw_data[‘TARGET CLASS’]
```

Next, you’ll need to run the `train_test_split` function using these two arguments and a reasonable `test_size`. We will use a `test_size` of 30%, which gives the following parameters for the function:

```python
x_training_data, x_test_data, y_training_data, y_test_data = train_test_split(x, y, test_size = 0.3)
```

Now that our data set has been split into training data and test data, we’re ready to start training our model!

Training a K Nearest Neighbors Model

Let’s start by importing the `KNeighborsClassifier` from `scikit-learn`:

```python
from sklearn.neighbors import KNeighborsClassifier
```

Next, let’s create an instance of the `KNeighborsClassifier` class and assign it to a variable named `model`
This class requires a parameter named `n_neighbors`, which is equal to the \(K \) value of the K nearest neighbors algorithm that you’re building. To start, let’s specify `n_neighbors = 1`:

```python
model = KNeighborsClassifier(n_neighbors = 1)
```

Now we can train our K nearest neighbors model using the `fit` method and our `x_training_data` and `y_training_data` variables:

```python
model.fit(x_training_data, y_training_data)
```

Now let’s make some predictions with our newly-trained K nearest neighbors algorithm!

Making Predictions With Our K Nearest Neighbors Algorithm

We can make predictions with our K nearest neighbors algorithm in the same way that we did with our linear regression and logistic regression models earlier in this course: by using the `predict` method and passing in our `x_test_data` variable.

More specifically, here’s how you can make predictions and assign them to a variable called `predictions`:

```python
predictions = model.predict(x_test_data)
```

Let’s explore how accurate our `predictions` are in the next section of this tutorial.

Measuring the Accuracy of Our Model

We saw in our logistic regression tutorial that scikit-learn comes with built-in functions that make it easy to measure the performance of machine learning classification models.
Let’s import two of these functions (`classification_report` and `confusion_matrix`) into our report now:

```python
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
```

Let’s work through each of these one-by-one, starting with the `classification_report`. You can generate the report with the following statement:

```python
print(classification_report(y_test_data, predictions))
```

This generates:

```
                      precision  recall  f1-score  support
  0        0.94      0.85      0.89       150
  1        0.86      0.95      0.90       150
accuracy                           0.90       300
macro avg       0.90      0.90      0.90       300
weighted avg       0.90      0.90      0.90       30
```

Similarly, you can generate a confusion matrix with the following statement:

```python
print(confusion_matrix(y_test_data, predictions))
```

This generates:

```
[[141  12]
 [ 18 129]]
```

Looking at these performance metrics, it looks like our model is already fairly performant. It can still be improved.
In the next section, we will see how we can improve the performance of our K nearest neighbors model by choosing a better value for K.

Choosing An Optimal K Value Using the Elbow Method

In this section, we will use the elbow method to choose an optimal value of K for our K nearest neighbors algorithm.

The elbow method involves iterating through different K values and selecting the value with the lowest error rate when applied to our test data.

To start, let’s create an empty list called `error_rates`. We will loop through different K values and append their error rates to this list.

```python
error_rates = []
```

- Next, we need to make a Python loop that iterates through the different values of K we’d like to test and executes the following functionality with each iteration:
 - Creates a new instance of the `KNeighborsClassifier` class from `scikit-learn`
 - Trains the new model using our training data
 - Makes predictions on our test data
 - Calculates the mean difference for every incorrect prediction (the lower this is, the more accurate our model is

Here is the code to do this for K values between 1 and 100:

```python
for i in np.arange(1, 101):
    new_model = KNeighborsClassifier(n_neighbors = i)
    new_model.fit(x_training_data, y_training_data)
    new_predictions = new_model.predict(x_test_data)
    error_rates.append(np.mean(new_predictions != y_test_data))
```
Let’s visualize how our error rate changes with different K values using a quick matplotlib visualization:

```python
plt.plot(error_rates)
```

As you can see, our error rates tend to be minimized with a K value of approximately 50. This means that 50 is a suitable choice for K that balances both simplicity and predictive power.
Common imports
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Import the data set
```python
raw_data = pd.read_csv('classified_data.csv', index_col = 0)
```

Import standardization functions from scikit-learn
```python
from sklearn.preprocessing import StandardScaler
```

Standardize the data set
```python
scaler = StandardScaler()
scaler.fit(raw_data.drop('TARGET CLASS', axis=1))
scaled_features = scaler.transform(raw_data.drop('TARGET CLASS', axis=1))
scaled_data = pd.DataFrame(scaled_features, columns = raw_data.drop('TARGET CLASS', axis=1).columns)
```

Split the data set into training data and test data
```python
from sklearn.model_selection import train_test_split
x = scaled_data
y = raw_data['TARGET CLASS']
x_training_data, x_test_data, y_training_data, y_test_data = train_test_split(x, y, test_size = 0.3)
```

Train the model and make predictions
```python
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors = 1)
model.fit(x_training_data, y_training_data)
predictions = model.predict(x_test_data)
```
Performance measurement

```python
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
print(classification_report(y_test_data, predictions))
print(confusion_matrix(y_test_data, predictions))
```

Selecting an optimal K value

```python
error_rates = []
for i in np.arange(1, 101):
    new_model = KNeighborsClassifier(n_neighbors = i)
    new_model.fit(x_training_data, y_training_data)
    new_predictions = new_model.predict(x_test_data)
    error_rates.append(np.mean(new_predictions != y_test_data))
```

```python
plt.figure(figsize=(16,12))
plt.plot(error_rates)
plt.plot(error_rates)
```

Final Thoughts

In this tutorial, you learned how to build your first K nearest neighbors machine learning model in Python.

Here is a brief summary of what you learned in this tutorial:

- How classified data is a common tool used to teach students how to solve their first K nearest neighbor problems
- Why it’s important to standardize your data set when building K nearest neighbor models
- How to split your data set into training data and test data using the `train_test_split` function
- How to train your first K nearest neighbors model and make predictions with it
- How to measure the performance of a K nearest neighbors model
- How to use the elbow method to select an optimal value of K in a K nearest neighbors model